Optical Absorption Spectra and Dynamic Jahn-Teller Effect of V²⁺ Ions in ZnSe

Yi-Yang Zhou

Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, Sichuan, P. R. China Reprint requests to Y.-Y. Z.; yiyazhou@mail.sc.cninfo.net

various additional levels found close to 5680 cm⁻¹ are considered. These levels are assumed to result from the dynamic Jahn-Teller splitting within the excitation levels 2T_2 and 2T_1 in ZnSe:V²⁺. The good agreement between the present results and the experimental observations indicates that the contribution of the covalence reduction factors $N_{\rm F}$ and $N_{\rm T}$, and of the Racah parameter A to the optical

Z. Naturforsch. **63a**, 830 – 838 (2008); received May 5, 2008

The Hamiltonian matrices for 3d³ ions in a cubic crystal field are introduced, based on a molecular orbital model, including the electronic Coulomb and tetrahedral crystal-field interactions and the spin-orbit coupling. The optical absorption spectra of V^{2+} ions in ZnSe are studied. Moreover, the

absorption spectra of V^{2+} ions in ZnSe is important. However, most of the previous theoretical studies of these spectra in ZnSe:V²⁺ have neglected the Racah parameter A, based on the classical crystalfield model. A significant charge-transfer effect found in recent works is confirmed in ZnSe: V^{2+} . Key words: Semimagnetic Semiconductors; Optical Absorption Spectra;

Dynamic Jahn-Teller Effect: V²⁺ Ions: ZnSe.